Sample test examples

1. In MP construct related views of the square $\boldsymbol{A B C D}$ lying in the plane $\boldsymbol{\alpha}(\mathbf{- 8 0 ; 6 0 ; 7 5)}$. The vertex $\boldsymbol{A}[\mathbf{4 0 , ? , 6 0}]$ and the centre $\boldsymbol{S}[\mathbf{1 0}, \mathbf{4 0}, ?]$ of the square are given.
2. In MP construct related views of the circle $\boldsymbol{k}(\boldsymbol{S} ; \boldsymbol{A})$, lying in the plane $\boldsymbol{\alpha}(\mathbf{6 5} ; \mathbf{5 0} ; \mathbf{6 0})$, the centre of the circle $\boldsymbol{S}[-\mathbf{2 0}, \mathbf{3 0}$, ? $] ; \boldsymbol{A}[\mathbf{- 2 0}, \mathbf{5 0}$, ?] .
3. In MP construct related views of the equilateral triangle $\boldsymbol{A B C}$ lying in the plane $\boldsymbol{\alpha}(\mathbf{- 8 0 ; 6 0 ; 7 5)}$. The vertices $\boldsymbol{A}\left[\mathbf{4 0 , ? , 6 0} ; \boldsymbol{B}[\mathbf{0 , 6 0 , ?}]\right.$ are given. Find the solution which satisfy $\mathbf{y}_{\mathbf{A}}<\mathbf{y c}$.
4. In MP construct related views of the circle $\boldsymbol{k}(\boldsymbol{S}, \boldsymbol{t})$. The centre of the circle $\boldsymbol{S}[\mathbf{0}, \mathbf{4 0}, \mathbf{3 0}]$ and its tangent $\boldsymbol{t}=(\boldsymbol{P}[-\mathbf{1 0}, 70,0], N[90,0,40])$ are given.
5. In MP construct related views of the circle $\boldsymbol{k}(\boldsymbol{K}, \boldsymbol{L})$ lying in the plane $\alpha \mathbf{(5 5 , 6 0 , 4 0)}$ where $\boldsymbol{K} \boldsymbol{L}$ is the circle diameter.
6. In MP construct related views of the square $\boldsymbol{A B C D}$. The vertex $\boldsymbol{A}[\mathbf{1 0 , 7 5 , 2 0}]$ is given and the diagonal of the square lies on the straight line $\boldsymbol{P M}, \boldsymbol{P}[\mathbf{6 0 , 6 0 , 0]}, \boldsymbol{M}[-\mathbf{4 0}, \mathbf{3 0}, 80]$.
7. In MP determine the distance of the point $\boldsymbol{A}[\mathbf{1 5 , 3 0 , 2 0]}$ from the plane $\boldsymbol{\alpha}(\mathbf{- 7 0 ; 7 0 ; 8 0)}$.
8. In MP determine the distance of the point $\boldsymbol{D}[\mathbf{1 0 , 2 0}, 25]$ from the straight line $\boldsymbol{d}=\boldsymbol{P}[\mathbf{- 5 0 , 1 0 , 0]}$; $Q[40,65,70]$.
9. In MP the point $\boldsymbol{M}[\mathbf{4 0 ; 9 0 ; 6 0]}$ and the plane $\boldsymbol{\alpha}=(\boldsymbol{B}, \boldsymbol{a}), \boldsymbol{a}=(\boldsymbol{P}[\mathbf{3 0 ; 3 5 ; 0]}, \boldsymbol{N}[-\mathbf{5 ; 0 ; 8 0}]), \boldsymbol{B}[\mathbf{1 0 ; 3 5 ; 2 0}]$ are given. Construct the point \boldsymbol{R} which is a perpedicular view of the point \boldsymbol{M} in the plane $\boldsymbol{\alpha}$. 10. In MP find the projections of a regular hexagonal pyramid given by the axis $\boldsymbol{O}(\boldsymbol{M}[\mathbf{- 4 0 ; 1 5 ; 3 0]}, \boldsymbol{N}[\mathbf{5 ; 4 5 ; 4 5]})$, the vertex $\boldsymbol{A}[\mathbf{0 ; 0 ; 3 0}]$ of the base and the height $\boldsymbol{v}=\mathbf{4 0}$. Find the solution which satisfy $\mathbf{z}_{\mathbf{A}}<\mathbf{z v}$.
10. In MP construct a rotate cylinder with its base lying in a given plane
$\boldsymbol{\rho}(\mathbf{- 3 0 , 4 0 , 5 0})$, a center of the base $\boldsymbol{S}[\mathbf{3 0}, \mathbf{4 0}, ?]$ lying in the plane ρ and a point $\boldsymbol{Q}^{\prime}[-\mathbf{5 0}, 75,65]$ lying on a circle of the second base.
11. In MP construct a right circular cone given by the axis $\boldsymbol{o}(\boldsymbol{P}, \boldsymbol{Q})$, the point $\boldsymbol{E}[\mathbf{2 0}, \mathbf{3 5}, \mathbf{5 0}]$ of the base and the height $\mathbf{v}=\mathbf{6 0} ; P[\mathbf{4 0 , 5 0}, 0], Q[-50,60,80]$.
12. In MP construct a regular quadrilateral prism given by the vertex $\boldsymbol{A}[\mathbf{1 0 , 7 5 , 2 0}]$ of the base and the diagonal of the square lies on the straight line $\boldsymbol{P M}, \boldsymbol{P}[\mathbf{6 0 , 6 0 , 0}], \boldsymbol{M}[-\mathbf{4 0}, \mathbf{3 0}, \mathbf{8 0}]$, the height $\boldsymbol{v}=\mathbf{8 0}$. 14. In MP construct a regular quadrilateral prism with its base $\boldsymbol{A B C D}$ lying in a given plane $\boldsymbol{\alpha}(\mathbf{5 5}, \mathbf{7 0}, \mathbf{4 5})$, a center of the base $\boldsymbol{S}[\mathbf{0 , 3 0}, ?]$ lying in the plane $\boldsymbol{\alpha}$ and a point $\boldsymbol{E}[\mathbf{2 5}, \mathbf{7 5}, \mathbf{8 5}]$ of the second base.
13. In MP construct a rotate cylinder with its base lying in a given plane $\boldsymbol{\alpha} \mathbf{(5 5 , \mathbf { 6 0 } , \mathbf { 4 0 })}$ where $\boldsymbol{K} \boldsymbol{L}$ is the circle diameter of the base \boldsymbol{k} and the height $\boldsymbol{v}=\mathbf{6 0} ; \boldsymbol{K}[\mathbf{0}, ?, 40], L[-20,50, ?]$.
14. In MP construct a cube with its base $\boldsymbol{A B C D}$ lying in a given plane $\boldsymbol{\alpha}(\mathbf{5 5}, \mathbf{6 0}, \mathbf{4 0})$ and the diagonal $A C$ of the base is given $A[0, ?, 40], C[-20,50, ?]$.
15. In MP find the projections of a regular quadrilateral prism given by the axis $\boldsymbol{o}(\boldsymbol{P}, \boldsymbol{Q})$, $P[\mathbf{4 0}, \mathbf{5 0}, \mathbf{0}], Q[-\mathbf{6 0}, \mathbf{8 0}, \mathbf{8 0}]$, the vertex $\boldsymbol{A}[\mathbf{2 0}, \mathbf{4 0}, 50]$ of the base and the height $\boldsymbol{v}=\mathbf{7 0}$.
16. In MP construct a regular quadrilateral pyramid with its base lying in a given plane
$\boldsymbol{\alpha}(\mathbf{5 0}, \mathbf{6 0}, \mathbf{5 0})$, the vertex $\boldsymbol{A}[\mathbf{1 0}, \mathbf{3 0}$, ?] of the base and the main vertex $V[\mathbf{4 0}, \mathbf{9 0}, \mathbf{8 0}]$.
17. In MP construct the section of a regular oblique triangular prism by the plane $\alpha(\mathbf{7 0}, \mathbf{4 5}, \mathbf{3 0})$.

The base $\boldsymbol{A B C}$ of the solid lies in the horizontal plane. The centre of the lower base is
$\boldsymbol{S}[-\mathbf{5 0}, \mathbf{5 0}, 0]$, the vertex of the lower base is $\boldsymbol{A}[-\mathbf{2 0}, \mathbf{3 0}, \mathbf{0}]$ and the axis of the solid is $\boldsymbol{S S}$,
$S^{\prime}[40,80,90]$.
20. In MP construct the section of a skewed(oblique) prism by the plane $\boldsymbol{\rho}(\mathbf{4 0} \boldsymbol{\mathbf { 5 0 }} \mathbf{; 4 0})$. The base of the prism is a square $\boldsymbol{A B C D}$ lying on the horizontal plane. There are given points of the base $\boldsymbol{A}[-\mathbf{4 0}$; $\mathbf{5 0} ; \mathbf{0}] ; \boldsymbol{B}[-\mathbf{3 0} ; \mathbf{2 0} ; \mathbf{0}]$ and the centre of the upper base $\boldsymbol{S}^{\boldsymbol{\prime}}[\mathbf{0} ; \mathbf{7 0} ; \mathbf{8 0}]$. Find the solution which satisfy $\mathbf{y c}_{\mathrm{C}}<\mathrm{yb}_{\mathrm{B}}$.
21. In MP construct the section of a oblique prismatic surface by the plane $\boldsymbol{\rho} \mathbf{(9 0 ; 1 1 0 ; 3 0)}$. The base of the surface is a square $\boldsymbol{A B C D}$ lying on the horizontal plane. The center of the square is $\boldsymbol{S}[-$ $\mathbf{2 0 ; 3 5 ; 0]}$; the vertex of the base is $\boldsymbol{A}\left[\mathbf{4 0 ; 6 0 ; 0]}\right.$ and the point $\boldsymbol{A}^{\prime}[\mathbf{5 0 ; 9 0 ; 7 0]}$ is the point of side edge $\boldsymbol{A} \boldsymbol{A}^{\prime}$. Determine the real size of the section.
22. In MP construct the section of a regular hexagonal pyramid by the plane $\boldsymbol{\rho} \mathbf{(8 0 ; 1 0 0 ; 3 0)}$. The base $\boldsymbol{A B C D E F}$ is lying on the horizontal plane. The point $\boldsymbol{A}[\mathbf{- 2 0 ; 6 0 ; 0]}$ is the vertex of the base and the point $V[0 ; 40 ; 50]$ is the main vertex.
23. In MP construct the section of an oblique hexagonal prism by the plane $\boldsymbol{\rho} \mathbf{(5 0 ; 9 0 ; 6 0)}$. The base $A B C D E F$ is lying on the horizontal plane. The center of the base is $\boldsymbol{S}[\mathbf{- 5 0 ; 4 0 ; 0]}$; the vertex of the base is $\boldsymbol{A}\left[\mathbf{- 5 0 ; 1 0 ; 0]}\right.$ and the point $\boldsymbol{A}^{\prime}[\mathbf{5 0 ; 4 0 ; 8 0]}$ is the point of upper base.
24. In MP construct the section of a oblique pyramid by the plane $\boldsymbol{\rho} \mathbf{(7 5 ; ~ 9 0 ; ~ 3 5) . ~ T h e ~ b a s e ~ o f ~ t h e ~}$ pyramid is a square $\boldsymbol{A B C D}$ lying on the horizontal plane. The center of the square is $\boldsymbol{S}[\mathbf{- 2 0 ; 5 0 ; 0]}$; the point $\boldsymbol{A}[\mathbf{- 3 0 ; 2 0 ; 0]}$ is the vertex of the base and the point $\boldsymbol{V}[\mathbf{5 0} ; \mathbf{4 0} ; \mathbf{8 0}]$ is the main vertex.

